Université PANTHEON-ASSAS (PARIS II) Droit - Economie - Sciences Sociales

U.E.F. 2 4007 Vaugirard 1

Session: Mai 2023

Année d'étude : Première année de licence économie-gestion mention économie et gestion

Discipline: Analyse micro-économique (Unité d'Enseignements Fondamentaux 1)

Titulaire du cours : Mme Lucie Ménager

Documents: Calculatrice non autorisée, documents non autorisés.

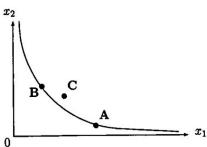
Reportez vos réponses sur la grille fournie. Il y a une seule bonne réponse par question. Une non-réponse vaut 0. Une mauvaise réponse vaut des points négatifs, donc ne répondez pas au hasard. Faites vos calculs au brouillon comme pour un examen standard. Bon travail.

Questions de cours

- Dans le plan (x_1, x_2) , la pente de la droite de budget est
- (A) négative et augmente avec le prix du bien 1.
- (B) positive et augmente avec le prix du bien 1.
- (C) positive et diminue avec le prix du bien 1.
- (D) négative et diminue avec le prix du bien 1.

Si on taxe le bien X_1 mais pas le bien X_2 , dans le plan (x_1, x_2) la pente de la droite de budget

- (A) augmente.
- (B) ne change pas.
- (C) diminue.


Supposons que $(1,2,3) \succeq (2,3,1)$ et que $(2,2,1) \succeq (1,2,3)$. Si \succeq vérifie l'axiome de non-saturation, quel axiome ne satisfait-elle pas ?

(A) La complétude. (B) La convexité. (C) La transitivité.

Supposons que $(1,2,3) \succeq (2,3,1)$. Si \succeq vérifie l'axiome de convexité, alors

(A)
$$(\frac{5}{3}, \frac{8}{3}, \frac{5}{3}) \prec (1, 2, 3)$$
. (B) $(\frac{3}{2}, \frac{5}{2}, 2) \prec (1, 2, 3)$. (C) $(\frac{3}{2}, \frac{5}{2}, 2) \succ (2, 3, 1)$.

Sur la figure suivante, on a représenté les paniers et la courbe d'indifférence d'un consommateur passant par les paniers A et B.

1

Quelle affirmation est vraie?

- (A) Le $TMS_{1/2}$ est plus élevé au panier A qu'au panier B.
- (B) Le $TMS_{1/2}$ est plus élevé au panier B qu'au panier A.
- (C) Le $TMS_{1/2}$ est le même au panier B et au panier A.

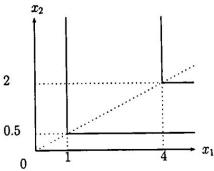
6 Si les préférences satisfont l'axiome de non-saturation et l'axiome de transitivité, les courbes d'indifférence peuvent-elle se croiser?

(A) Oui; (B): Non.

Considérons un consommateur dont la demande en bien X dépend de son revenu R et du prix du bien p selon la relation $x(R,p)=\frac{100\sqrt{R}}{p}$. Il est possible d'affirmer que pour ce consommateur

(A) X est un bien inférieur.

(B) X est un bien de première nécessité.


(C) X est un bien de luxe.

(D) X est un bien Giffen.

Exercice 1

Un consommateur muni d'un revenu R ne retire de satisfaction à boire un café que lorsqu'il y a exactement a sucres dedans, avec $a \in \mathbb{R}$. On note x_1 le nombre de cafés et x_2 le nombre de sucres. Un café coûte 1.5 euros et un sucre coûte 1 euro.

Les courbes d'indifférence du consommateur sont représentées dans le plan (x_1, x_2) ci-dessous.

8 Combien vaut a?

(A) 4; (B) 1; (C) 0.5; (D) 2.

Quelle est la contrainte budgétaire du consommateur?

(A)
$$x_1+x_2=R$$
; (B) $x_1+1.5x_2=R$; (C) $1.5x_1+1.5x_2=R$; (D) $1.5x_1+x_2=R$.

[10] Combien vaut la demande du consommateur en cafés?

(A)
$$\frac{R}{2}$$
; (B) $\frac{R}{4}$; (C) R; (D) 2R.

Exercice 2

Soit une économie à deux biens X_1 et X_2 . On considère un consommateur dont les préférences sur les paniers (x_1, x_2) peuvent être représentées par la fonction d'utilité

$$u(x_1, x_2) = x_1 + 3x_2$$

Le consommateur dispose d'un revenu R et les prix des biens sont $p_1 = 1$ et $p_2 = 2$.

- Dans le plan (x_1, x_2) , la droite de budget du consommateur coupe
- (A) l'axe des abscisses en $\frac{R}{2}$ et l'axe des ordonnées en R.
- (B) l'axe des abscisses en R et l'axe des ordonnées en 2R.
- (C) l'axe des abscisses en R et l'axe des ordonnées en $\frac{R}{2}$.
- (D) l'axe des abscisses en 2R et l'axe des ordonnées en R.
- Dans le plan (x_1, x_2) , les courbes d'indifférence sont des demi-droites de pente

(A) 3; (B)
$$\frac{1}{3}$$
; (C) -3; (D) $-\frac{1}{3}$.

13 La demande optimale du consommateur est

(A) le panier
$$\left(0,\frac{R}{2}\right)$$
; (B) le panier $\left(\frac{R}{2},\frac{R}{4}\right)$; (C) le panier $(R,0)$; (D) le panier donné par la condition $TMS_{1/2}(x_1,x_2)=\frac{1}{2}$.

Exercice 3

Les parents font les courses dans un magasin de vêtements. Ils disposent de 90 euros pour acheter une quantité x de vêtements pour adultes (bien X), et une quantité y de vêtements pour enfants (bien Y). Le prix des vêtements pour adultes est p euros et celui des vêtements pour enfants est p euros. Les préférences des parents sur les paniers de vêtements sont représentées par la fonction

$$u(x,y) = x^{1/4}y^{1/2}$$

14 Le taux marginal de substitution $TMS_{x/y}(x, y)$ est

(A)
$$\frac{y}{2x}$$
; (B) $\frac{2y}{x}$; (C) $\frac{x}{2y}$; (D) $\frac{2x}{y}$.

15 La demande des parents en vêtements d'adultes est

(A)
$$x = \frac{90p}{8+p^2}$$
; (B) $x = \frac{60}{p}$; (C) $x = \frac{90p}{2+p^2}$; (D) $x = \frac{30}{p}$.

16 La demande des parents en vêtements d'enfants est

(A)
$$y = \frac{360}{8+p^2}$$
; (B) $y = 15$; (C) $y = \frac{90}{2+p^2}$: (D) $y = 30$.

17 L'élasticité prix de la demande en vêtements pour adultes est

(A)
$$\frac{30}{p}$$
; (B) -1 ; (C) $-\frac{1}{p}$; (D) $-\frac{60}{p^2}$.

- Le prix des vêtements d'adultes augmente de 20%. Quelle est la variation relative de la demande en vêtements d'adultes?
- (A) Elle augmente de 20%. (B) Elle diminue de 20%. (C) Elle augmente de 1 euro. (D) Elle diminue de 1 euro.

Exercice 4

Soit une économie à 2 biens. Les préférences de Riri, Fifi et Loulou peuvent être représentées par les fonctions d'utilité :

Riri :
$$u_J(x_1, x_2) = x_1 x_2$$

Fifi:
$$u_V(x_1, x_2) = x_1 + x_2$$

Loulou:
$$u_v(x_1, x_2) = \min\{x_1, 2x_2\}$$

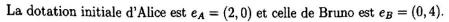
La dotation initiale totale de l'économie est e=(9,9). On considère les allocations

$$A_1 = \{(3,3), (3,3), (3,3)\}$$

$$A_2 = \{(0,9), (6,0), (3,0)\}$$

$$A_3 = \{(1,4), (3,2), (5,3)\}$$

19 L'utilité de Riri en l'allocation qui maximise le critère utilitariste est


20 L'utilité de Riri en l'allocation qui maximise le critère égalitariste est

Exercice 5

Alice et Bruno ont pour fonction d'utilité:

$$A : u_A(x_A, y_A) = x_A y_A$$

$$B : u_B(x_B, y_B) = x_B^{1/2} y_B^{1/2}$$

21 Les taux marginaux de substitution du bien x au bien y des deux agents sont

(A)
$$TMS^A(x_A, y_A) = \frac{y_A}{x_A}$$
 et $TMS^B(x_B, y_B) = \left(\frac{y_B}{x_B}\right)^{1/2}$

(B)
$$TMS^A(x_A, y_A) = \frac{x_A}{y_A}$$
 et $TMS^B(x_B, y_B) = \frac{x_B}{y_B}$

(C)
$$TMS^A(x_A, y_A) = \frac{y_A}{x_A}$$
 et $TMS^B(x_B, y_B) = \frac{y_B}{x_B}$

(D)
$$TMS^{A}(x_{A}, y_{A}) = \frac{x_{A}}{y_{A}} \text{ et } TMS^{B}(x_{B}, y_{B}) = \left(\frac{x_{B}}{y_{B}}\right)^{1/2}$$

[22] L'ensemble des optima de Pareto est

(A)
$$\{\{(x_A, 2x_A)(2 - x_A, 4 - 2x_A)\}, x_A \in [0, 2]\}$$

(B)
$$\{\{(x_A, \frac{x_A}{2} + 3)(2 - x_A, 1 - \frac{x_A}{2})\}, x_A \in [0, 2]\}$$

(C)
$$\{\{(x_A, x_A^2)(2 - x_A, 4 - x_A^2)\}, x_A \in [0, 2]\}$$

On note p le prix du bien X et on normalise le prix du bien Y à 1. La demande optimale d'Alice est

(A)
$$\left(\frac{1}{p}, 2p-1\right)$$
; (B) $(2,0)$; (C) $(1,p)$; (D) $(p, 2p-p^2)$.

24 La demande optimale de Bruno est

(A)
$$\left(\frac{2}{p},2\right)$$
; (B) $(2,4-2p)$; (C) $\left(\frac{1}{p},3\right)$; (D) $(1,4-p)$.

25 Le prix d'équilibre du bien X est

(A)
$$p^* = 1$$
; (B) $p^* = 2$; (C) $p^* = 3$; (D) $p^* = 4$.

26 L'allocation d'équilibre $\{(x_A^*, y_A^*), (x_B^*, y_B^*)\}$ est

(A)
$$\{(1,1),(2,2)\}$$
; (B) $\{(1,2),(1,2)\}$; (C) $\{(2,1),(2,1)\}$; (D) $\{(2,2),(2,2)\}$.

Exercice 6

Une entreprise produit un output en utilisant du travail L et du capital K, selon la fonction de production

$$f(l,k) = 3l + k$$

Les prix des facteurs de production sont w=2 pour le travail et r=1 pour le capital. L'entreprise ne peut pas utiliser plus de 20 unités de travail pour des raisons légales. Elle a un coût fixe de location de machines de 10.

Les rendements d'échelle de l'entreprise sont

(A) croissants. (B) constants. (C) décroissants.

28 Le coût de l'entreprise lorsqu'elle utilise le panier d'inputs (l, k) est

(A) l + k + 10; (B) l + 2k + 10; (C) 2l + k; (D) 2l + k + 10.

Pour minimiser son coût d'utilisation des facteurs, l'entreprise à intérêt à utiliser comme quantité de travail

(A) l = 0; (B) l = 20; (C) l = 100.

[30] Le coût minimal à produire 100 unités d'output est

(A) 60; (B) 70; (C) 80; (D) 90.

Exercice 7

L'entreprise Assas produit de la farine, en quantité y. Elle n'a pas de coût fixe, et la production de y kilos de farine lui coûte $3y^2$. Le marché de la farine est en concurrence parfaite.

31 La fonction de coût de Assas est

(A)
$$C(y) = -3y^2$$
; (B) $C(y) = 3y^2$; (C) $C(y) = y - 3y^2$; (D) $C(y) = y + 3y^2$.

(A)
$$\Pi(y,p) = py - 3y^2$$
; (B) $\Pi(y,p) = py + 3y^2$; (C) $\Pi(y,p) = y - 6y$; (D) $\Pi(y,p) = y + 6y$.

[33] Le coût marginal de Assas est

(A)
$$C_m(y) = -6y$$
; (B) $C_m(y) = 6y$; (C) $C_m(y) = 1 - 6y$; (D) $C_m(y) = 1 + 6y$.

[34] La fonction d'offre de Assas est

(A)
$$S(p) = -\frac{p}{6}$$
; (B) $S(p) = \frac{p}{6}$; (C) $S(p) = \frac{1-p}{6}$; (D) $S(p) = \frac{p-1}{6}$.

La demande agrégée sur le marché de la farine est donnée par $D(p) = 100 - \frac{p}{2}$. Le prix d'équilibre sur le marché de la farine est donc

(A)
$$p^* = 0$$
; (B) $p^* = 120$; (C) $p^* = 150$; (D) $p^* = 0.5$.

Soit une économie à 2 biens. Les préférences des consommateurs A et B sont représentées par $u_A(x_A,y_A)=2x_A+y_A$ et $u_B(x_B,y_B)=x_B+y_B$. Les dotations initiales des agents sont $e_A=(5,5)$ et $e_B=(15,5)$.

Sur une feuille à carreaux, tracez avec soin la boîte d'Edgeworth et les courbes d'indifférence des agents passant par l'allocation initiale. Vous devez pouvoir répondre aux questions suivantes en utilisant uniquement votre graphique.

- [36] L'allocation {(8,1), (12,9)}
- (A) Pareto-domine l'allocation initiale.
- (B) est Pareto-dominée par l'allocation initiale.
- [37] L'allocation $\{(3,8),(17,2)\}$
- (A) Pareto-domine l'allocation initiale.
- (B) est Pareto-dominée par l'allocation initiale.
- [38] L'allocation $\{(0,5),(20,5)\}$ est un optimum de Pareto.
 - (A) C'est vrai.; (B) C'est faux.
- L'allocation $\{(20,5),(0,5)\}$ est un optimum de Pareto.
 - (A) C'est vrai.; (B) C'est faux.
- 40. A l'équilibre, le consommateur A consomme :

- (A) 0 unités de bien X.
- (B) 10 unités de bien X.
- (C) Entre 7.5 et 10 unités de bien X.
- (D) Entre 7.5 et 10 unités de bien Y.